

At-wavelength Alignment and Testing of the 0.3-NA MET Optic

Reaching diffraction-limited imaging, and beyond

Kenneth Goldberg

Center for X-Ray Optics, LBNL

Patrick Naulleau, Paul Denham, Senajith Rekawa Alex Liddle, Bruce Harteneck, Keith Jackson, Ron Tackaberry, Jeff Gamsby, Robert Gunion, Eric Gullikson, Erik Anderson

LLNL

John Taylor, Don Phillion, Layton Hale, Mike Johnson, Henry Chapman, Nhan Nguyen, Gary Sommargren International SEMATECH Project Manager

Kim Dean

Project Goals

Create and operate an EUV resist-testing facility with imaging down to ~15 nm, and several unique capabilities. (see Naulleau, et al.)

For Optimal EUV imaging, wavefront tolerances are ~0.1 nm

Ultra-high accuracy *EUV interferometry*

- Many opportunities for learning
- Extensions of known techniques
- Opportunity for cross-comparison

The MET (Set-2)

(shown here with surrogate optics)

Made by <u>Zeiss</u>.
Assembled and pre-aligned by
<u>Lawrence Livermore</u>.

At-wavelength MET-testing overview

EUV interferometry, alignment and characterization

At-wavelength MET-testing overview

EUV interferometry, alignment and characterization

Successful application of shearing and PS/PDI at 0.3 NA

At-wavelength MET-testing overview

EUV interferometry, alignment and characterization

Successful application of shearing and PS/PDI at 0.3 NA

Optic reached diffraction-limited wavefront performance

Visible PSDI • EUV PS/PDI • EUV LSI intercomparison

complicated by alignment issues

Three high-accuracy interferometers

\sim	Α
umm	[111]
BERKELEY LA	

lensless PSDI	LSI (shearing)	PS/PDI
LLNL Lawrence Livermore	LBNL Lawrence Berkeley	LBNL Lawrence Berkeley
visible-light $\lambda = 532.2 \text{ nm}$	EUV 13.5 nm	EUV 13.5 nm
accuracy target ~λ _{vis} /5322	~λ _{EUV} /135	< λ _{EUV} /135
-Essential for single-element testingConvenient for system alignmentOperates at air.	-Fast, easy to performHigh accuracy requires careful calibration & analysisUsed for field measurement and alignment.	 -The high-accuracy standard. -Working with sub-30-nm pinholes for 0.3 NA testing is a challenge. -Used for accuracy validation and higher spatial-f response. -Covers the full pupil

Final visible-light measurement of the MET

astigmatism, coma, and spherical aberration were "zeroed" by alignment

10 < r < 26 mm

0.56 nm 37-Zernike fit

0.15 nm astigmatism

0.12 nm trifoil

0.10 nm coma

0.05 nm spherical ab.

0.49 nm h.-o. spherical

Data courtesy Don Philion, LLNL

MET Set-2 visible-light data, LLNL/LBNL

The importance of measuring the whole pupil

- We cannot predict the aberrations outside of the measurement domain
- Values depend strongly on the pupil area.

Modeling based on only part of the pupil gives you only part of the answer

LLNL

LBNL

one month

Alignment

Initial shearing measurement at 20°C

In our first EUV measurements at 20°C, a large, *unexpected* primary spherical aberration was dominant.

Higher-order spherical aberration was also present.

First EUV alignment

Field measurement

O	₃₇ [nn	1]	central field point [nm]
0.84	0.80	0.66	astig = 0.05
	0.00	0.04	coma = 0.08
0.80	0.66	0.84	sph. ab. = 0.02
0.94	0.66	0.83	trifoil = 0.22
		_	ho. sph. = 0.34
$\lambda/20.5$			

Astigmatism, coma, and spherical aberration are sensitive to alignment and can be removed.

Adjustments are made to M1's 6-arm mount: 0.03-2.50 µm step sizes.

M030806

PS/PDI measurements 2 days after LSI alignment

as-measured [nm]

 $\sigma_{37} = 0.68$

PV = 3.54

astig. = 0.18

coma = 0.28

sph. ab. = 0.40

trifoil = 0.10

h.-o. s. = 0.30

"base" [nm]

 $\sigma_{37} = 0.45$

PV = 2.92

With astigmatism, coma, and spherical aberration removed.

The system alignment had changed noticeably in 2 days.

System stability

The stability of every optical system is unique.

THEORY:

- We believe small alignment actuations contribute to the instability.
- Vent/pump cycles may release stress.
- There is not enough data to draw firm conclusions.

REMINDER:

These effects are small, not large.
 Wavefront changes were a few tenths of a nm.

In-Situ Monitoring will be important

Second (and best) EUV alignment

central field point [nm] $0.79 \ 0.59 \ 0.71$ astig = 0.04 coma = 0.06 $0.90 \ 0.55 \ 0.76$ sph. ab. = 0.04 trifoil = 0.14 h.-o. sph. = 0.37 $\lambda/24.5$

Following the installation of some imaging hardware, the optic was re-measured and re-aligned, achieving its best overall alignment.

Wavefront measurements during alignment

central field point

- Initial value
- Value following final alignment

Following initial alignment and measurement, the optic was removed and replaced in the chamber as components for imaging were installed.

Wavefront measurements during alignment

DERKELEY LAB

central field point

- Initial value
- Observed drift over 1 month
- Last measured value

The cause of the drift was never established

How sensitive is the wavefront to actuation?

Six arms support the M1 mirror.

A <u>1-µm</u> change in the arm length yields the following wavefront changes:

[nm]

aberration coefficient	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5	Arm 6
coma	3.191 57.3°	2.765 -167.8°	3.020 -76.2°	3.047 69.6°	3.323 165.3°	2.647 -44.3°
astigmatism	0.192 -119.4°	0.213 156.2°	0.161 12.2°	0.177 85.2°	0.135 -21.2°	0.044* -121.7°
spherical aberration	0.071	0.069	0.071	0.100	0.065	0.082
Δ(Wavefront)						

Mirror actuation also affects the field position

Final alignment state of the optic

σ ₃₇ [nm]				
1.16	1.00	0.99		
1.22	0.80	0.94		
0.83	0.76	0.83		

 $\lambda / 17.8$

middle-bottom field point [nm]

astig = 0.03

coma = 0.51

sph. ab. = 0.04

trifoil = 0.08

h.-o. sph. = 0.37

One month after the final alignment, the system had drifted slightly out of its optimized alignment

How precise or repeatable is shearing interferometry?

1) Instantaneous repeatability

The variation of the Zernike coefficients within a set of measurements — averaged over hundreds of measurement sets.

How precise or repeatable is shearing interferometry?

1) Instantaneous repeatability

The variation of the Zernike coefficients within a set of measurements — averaged over hundreds of measurement sets.

2) Across-the-field measurements

We observed small, self-consistent variations from point to point despite:

- (a) different pinholes
- (b) Over 3 mm of system travel.

3) Measurement during alignment

System alignment to remove astigmatism, coma, spherical aberration requires stable, self-consistent measurements. We routinely achieved ~0.05-nm control.

How much EUV power do you need for interferometry?

Compact, Coherent EUV Source Development at the New EUV Science & Technology Center

Colorado State University **Fort Collins** (Rocca, Menoni et al.)

Ni-like Ag EUV Laser 10⁹ $\lambda = 13.9 \text{ nm}$ $(4d \rightarrow 4p)$ Intensity (arb. units) (200 nJ @ 5 Hz) 10^{7} 13.9 nm Length (mm)

University of Colorado Boulder (Murnane, Kapteyn et al.)

> **EUV High Harmonic** Generation (HHG)

University of California Berkeley & LBNL (Attwood, Anderson et al.)

> Applications to EUV Metrologies:

- · Compact, at-wavelength **EUV** interferometry
- Compact, EUV source for defect inspection
- Compact, EUV sources for EUV microscopy
- · Compact, EUV sources for resist development

EUV Laser Wavelengths

Tunable EUV Harmonics

Courtesy of David Attwood

K. GOLDBERG, LBNL

Conclusions

Successful EUV interferometry at 0.3 NA.

Repeated measurements made across the field during alignment optimization.

Interferometry, alignment brought the system to diffraction-limited wavefront quality: σ_{37} = 0.55 nm, $\lambda_{EUV}/24.5$

Alignment drift complicated measurements and comparisons.

Final wavefront at central field point: σ_{37} = 0.8 nm, $\lambda_{EUV}/17$.

Comparisons with PSDI (vis) showed consistent higher-order spherical aberration, but weak agreement in non-rotationally symmetric terms. LSI-to-PS/PDI comparison revealed subtle aspects of the data analysis that are undergoing further study.

Acknowledgment: Kim Dean, International SEMATECH

